[技術報告]

スペイン・ウエルバにおける WMO ヨーロッパ地区 ブリューワー分光光度計相互比較(2019)

藤原 宏章*・上里 至*・津田 元気*・高野 松美**

WMO Brewer Spectrophotometer Intercomparison Campaign in Huelva, Spain (2019)

Hiroaki FUJIWARA, Itaru UESATO, Genki TSUDA and Matsumi TAKANO

要旨

スペイン・ウエルバのスペイン国立航空宇宙技術研究所El Arenosillo実験センターにおいて,2019年6月17 日~28日の日程で開催された,世界気象機関ヨーロッパ地区ブリューワー分光光度計相互比較に参加した. 気象庁は国内基準器Brewer MKIII #174(BR#174)を現地に持ち込み,ブリューワー分光光度計の世界基準器 を保有するカナダ環境・気候変動省の移動基準器Brewer MKIII #190(BR#190)とのオゾン全量,二酸化硫黄 全量および波長別紫外線量の相互比較観測を実施した.その結果,BR#174はBR#190に対しオゾン全量は約 1.5%小さく,二酸化硫黄全量は1.3 m atm-cm大きい結果となった.この結果を受け,オゾン・二酸化硫黄観 測用常数の変更を行った.波長別紫外線量については1%以内の差に収まっていることが確認された.

また、スペイン気象局が保有するヨーロッパ地区基準器Brewer MKIII #185(BR#185)との比較では、BR#174 はBR#185に対しオゾン全量は約2.3%小さく、二酸化硫黄全量は0.4 m atm-cm小さかった. BR#190による校 正後ではBR#174はBR#185に対しオゾン全量は約0.9%小さく、二酸化硫黄全量は1.8 m atm-cm小さかった. 波長別紫外線量は、BR#174はBR#185に対し約6%小さかった.ダボス物理気象観測所/世界放射センターの 紫外域スペクトルラジオメータの移動基準器(QASUME)との波長別紫外域日射照度の比較では、太陽高度の 高い日中はBR#174はQASUMEに対し5~10%小さく、朝晩では最大で15%程度小さい結果となった.太陽高 度が低くなるにつれて出力が低下する要因として、ブリューワー分光光度計が持つ入射角特性が大きく影 響していると考えられる.

1. はじめに

気象庁(Japan Meteorological Agency: JMA)は 1990年に ブリューワー分光光度計(以下,「ブリューワー」という.) を用いた波長別紫外域日射観測を開始し,現在はつくば と南極昭和基地において同観測を行っている.また,1955 年につくばで開始したオゾン観測は,2018年2月にドブ ソン分光光度計(以下,「ドブソン」という.)からブリュ ーワーを用いた観測に移行し,現在はつくば,札幌およ び那覇においてオゾン全量・反転観測を行っている.

ブリューワーにおける波長別紫外域日射観測用の常数

*高層気象台 観測第二課

**大阪管区気象台 観測課

は、ランプ(例えば、NIST ランプ:アメリカ国立標準技術 研究所(National Institute of Standards and Technology: NIST) により精密に波長別放射照度を値付けられたランプ)によ り決定されるが、オゾン観測用の常数は基準器との太陽 光を用いた相互比較観測により得られる.

世界気象機関(World Meteorological Organization: WMO) は全球大気監視(Global Atmosphere Watch: GAW)計画の枠 組みのもと,均質で精度の高いオゾン観測データを全世 界で得るため,カナダ環境・気候変動省(Environment and Climate Change Canada: ECCC)が保有する世界基準器を頂 点としたブリューワーの校正体系を確立している. GAW 計画は各国の運用機関が所有するブリューワーに対し, 世界基準器もしくは地区基準器との 2 年毎の相互比較観 測を推奨している(WMO, 2001).

JMA では 1993 年以降,世界基準器を維持するカナダ環 境省(Environment Canada: EC)(現 ECCC)との日加二国間技 術協力を推進させ,ブリューワーの国際相互比較(以下, 「国際比較」という.) への参加を開始し,1994 年に米 国ボールダーで,1997 年,2002 年,2006 年,2010 年,

2014年,2018年にカナダ国トロントで,実質4年ごとに 国際比較に参加してきた(下道・伊藤:1995,伊藤ほか: 1998,伊藤・宮川:2003,伊藤ほか:2007,Ito et al.:2010, 上里ほか:2015).しかし,2018年2月よりオゾン観測用 測器としても使用を開始したJMAのブリューワーは,こ れ以降2年毎に基準器との相互比較観測が必要となった.

このような情勢の中,世界基準器を保有する ECCC が 今回の WMO ヨーロッパ地区ブリューワー相互比較に参 加するとの情報を得たため,JMA は本相互比較に参加す る運びとなった.なお,ECCC が持ち込んだ BR#190 は, 本相互比較の開催直前に世界基準器と直接比較校正した 移動基準器である.

この相互比較に JMA は国内基準器(BR#174)を持ち込み, 相互比較観測を実施した. JMA にとって, ヨーロッパ地 区基準器や他の多数のブリューワーが参加する地区相互 比較に参加することは今回が初の試みである.

なお,本稿で使用する測器に関する装置や専門用語は, McElroy *et al.*(2008)や Kipp & Zonen(1996, 2008a, b)等を 参照して頂きたい.

2. 第14回ヨーロッパ地区ブリューワー分光光度計相互 比較

2.1 概要

WMO ヨーロッパ地区ブリューワー分光光度計相互比 較(以下,「本相互比較」という.)は,ブリューワーによ り全世界で均質で精度の高いオゾン全量および波長別紫 外域日射データを得るとともに,測器の精度維持・向上 を図ることを目的としている.今回で14回目を迎える本 相互比較は,WMO とヨーロッパ地区ブリューワー校正セ ンター(Regional Brewer Calibration Center – Europe: RBCC-E)を担うスペイン気象局(La Agencia Estatal de Meteorología: AEMET)との共催で,スペイン・ウエルバ のスペイン国立航空宇宙技術研究所(Instituto Nacional de Técnica Aeroespacial: INTA) El Arenosillo実験センターに おいて開催された(写真 1).本相互比較には開催国のスペ イン,世界基準器を保有するカナダの他,アルジェリア, イギリス,オランダ,ギリシャ,スイス,デンマーク, 日本(JMA)が参加し,合計 20 台のブリューワーが集まっ た.また、ブリューワーの他に、ドブソン、Pandora 等の 各種オゾン観測測器との相互比較観測も行われ、ドブソ ンについては、期間中 15 分おきに現地担当者により太陽 直射光を用いたオゾン全量観測が実施された.また波長 別紫外域日射観測では、ブリューワー以外に、スイスの ダボス物理気象観測所/世界放射センター (Physikalisch-Meteorologisches Observatorum Davos / World Radiation Center : PMOD/WRC)の管理する紫外域スペク トルラジオメータの移動基準器(Quality Assurance of Spectral Ultraviolet Measurements in Europe : QASUME(写真 2))が参加し,相互比較観測が行われた.

写真1 ブリューワー分光光度計相互比較の様子2019年6月22日, INTA El Arenosillo 実験センター屋上にて.

写真 2 PMOD/WRC が持ち込んだ紫外域スペクトルラ ジオメータ(QASUME)

2.2 相互比較のスケジュール

本相互比較のスケジュールは,あらかじめ主催者側から,Installation, Blind days, Servicing days, Final ozone days, Packing と題し日程が計画されていたが,実際には天候等 をみながら柔軟に運用された(表 1).

Installation では、それぞれが持ち込んだブリューワーを 組立て、輸送による測器の異常の有無を把握するための 点検を行い、確認が終わった測器から事務局側が用意し たスケジュールファイルを用いた相互比較観測を開始し た.

Blind Days は、校正前の測器の状態や各種常数を把握す るための期間であり、機器内部の光軸を調査する点検、 測器の感度を把握する外部標準ランプ点検(50W ハロゲン ランプによる点検)、全測器の観測スケジュールを合わせ た太陽直射光を用いたオゾン全量(Total column ozone:以 下,「O3 全量」という.)および二酸化硫黄全量(Total column sulfur dioxide:以下,「SO2全量」という.)の相 互比較観測を行い,校正前常数の確認を行った.この Blind Days は当初予定されていたよりも2日長く行われた.

Servicing days では、測器毎に必要に応じてメンテナン スや修理を行った後、分光常数点検(Dispersion Test:スペ クトルランプによる各種常数の校正試験)、NIST ランプ検 定を行い、既存の常数の確認や新しい常数が決定された. これらの作業が済んだ測器より、O3 全量観測を中心とし た相互比較観測が開始された.BR#174 は、Servicing days の初日(6/22)に分光常数点検と外部標準ランプ点検を行 った.点検の結果、測器に異常がなかったため、この日 の午後には相互比較観測を開始した.

6/25 からの Final ozone days では, 引き続き O3 全量の相

互比較観測を行うとともに、QASUME との相互比較デー タを取得するための波長別紫外域日射観測が集中的に行 われた.

3. 本相互比較参加前の国内基準器 (BR#174) の状態

国内基準器 BR#174 は, 2006 年の国際比較に参加して 以降,2018年3月を含めこれまで計4回(いずれもトロン ト)の世界基準器との相互比較観測を実施している.前回 の 2018 年 3 月以降, 測器状態は概ね安定していたが, 2019 年 4 月に実施した国内業者による定期点検調整の際に測 器に何らかの変化が生じ,内部標準ランプ点検によるオ ゾン(O3)観測用二重比の点検値(R6 値)が定期点検調整の 前と比較し10程度低下し、O3全量観測用常数が変化した (図 1). また、二酸化硫黄(SO₂)観測用二重比の点検値(R5 値)においても10程度の低下がみられた.そこで、この常 数の変化が O3 全量および SO2 全量観測値に及ぼす影響を 把握するため, つくばで同時観測を行っていた BR#200 を 基準にそれぞれの変化量を見積もったところ、変化量は O3全量観測値では約-0.5%, SO2全量観測値では約+1.0 m atm-cm であった. なお WMO(2001)では, O3 全量観測にお ける極めて高い測定精度目標値として±1%が挙げられて いる.

4. オゾン(0₃)・二酸化硫黄(SO₂)全量の相互比較結果 4. 1 観測方法および解析に用いたデータ

O3 全量および SO2 全量の相互比較観測は、本相互比較 の主催者側が用意した観測スケジュールに従い実施され た.ここでは、相互比較観測期間 6/17~6/27 の 11 日間で 行われた太陽直射光観測(DS 観測)の中から、比較対象の

表 1	第14回ヨーロッパ地区ブリューワー分光光度計相互比較のスケジュール
	JD : ユリウス目(Julian Day). 年初(1月1日)からの通算日数.

日付	JD	天気概況	SCHEDULE	主な内容		
6/17 (Mon)	168	霧のち晴	INSTALLATION	開梱、設置、観測開始		
6/18 (Tue)	169	墨	PLIND DAYS (02 Macauramenta)			
6/19 (Wed)	170	霧のち晴	Eiret set of measurements to access the current state	各種点検、オゾン全量相互比較観測		
6/20 (Thu)	171	晴	of the instruments	(校正前の測器状態、常数確認)		
6/21 (Fri)	172	晴	or the instruments			
6/22 (Sat)	173	曇 時々 晴	SERVICING DAYS (03 Measurements / 03 Services)	メンテナンス		
6/23 (Sun)	174	晴 一時 薄曇	Servicing / Maintenance Works/ Characterization	常数決定のための各種ランプ点検		
6/24 (Mon)	175	薄曇のち曇	(Dispersion Test) /ATMOZ field campaign	オゾン全量相互比較観測		
6/25 (Tue)	176	晴	FINAL OZONE DAYS (03 Magguramants /LIV)			
6/26 (Wed)	177	霧のち晴	IIV Comparison with QASHME unit	オゾン全量・紫外線相互比較観測		
6/27 (Thu)	178	晴				
6/28 (Fri)	179	晴	PACKING	梱包・発送		

 図1 BR#174の内部標準ランプ点検による O3・SO2観 測用二重比の推移(2018年3月~2019年5月)
上:O3点検値(R6値),下:SO2点検値(R5値).
赤矢印の定期点検調整の前後で段差が生じている.

基準器である BR#190 と BR#174 との観測時刻の差が4分 以内,かつ大気路程µが1.3~5のデータを抽出したデー タセットを作成し,解析を行った.

4.2 比較結果

BR#190に対する BR#174のO₃全量の比較結果を図2に, SO₂全量の比較結果を図3に示す.両図とも,上図に両測 器による全量値の散布図(BR#190の観測値に対する BR#174の観測値)を,下図に大気路程 μ(Air mass)に対す る偏差(%)をそれぞれ示した.なお,SO₂全量は観測値の 絶対値が小さいため,差(BR#174-BR#190)で評価した.

(1) O3 全量の比較結果

図 2 のとおり, 常数校正前の BR#174 の O₃ 全量は, BR#190 に対して 1.47%小さい値となった. なお, 3. で判 明した約-0.5%の変化を考慮すると, BR#174 は BR#190 に対し約-1.0%となる. また, 大気路程 µ が大きくなるに つれて偏差が小さくなる系統誤差がみられた.

(2) SO2全量の比較結果

図 3 のとおり, BR#190 に対し BR#174 は 1.3 m atm-cm 大きい結果となった. 2019 年 4 月の定期点検による変化 を加味すると約 0.3 m atm-cm 大きい. また, 大気路程 µ が大きくなるにつれて偏差が小さくなる系統誤差がわ ずかに認められた.

図 2 校正前の O₃ 全量の比較(BR#174/BR#190) 上図:O₃ 全量散布図.

下図: Air mass 別の偏差(%).

上図:SO2全量散布図.

下図: Air mass 別の偏差(m atm-cm).

4.3 常数の変更

相互比較観測期間中の Servicing days 1 日目の 6/22(JD173)に分光常数点検(Dispersion Test)を行った.使 用したランプは Cadmium, Zinc, Indium, Mercury の4種 類で,分光常数点検解析用ソフトウェア Dispro を使用し, O₃ および SO₂ 吸収係数を決定した.なお,分光常数点検 による解析はこれまで 2 次式を用いていたが,3 次式によ る解析が高精度である(Redondas *et al.*: 2018)ため,3 次式 により解析を行った.新しい O₃ および SO₂ 吸収係数 (absn)と, **4**.2 の結果を受け,校正後の偏差が 0 になる ように決定した O₃ および SO₂ の大気外常数 (Extra-Terrestrial Coefficients: ETC 値)は表2 に示し,相互 比較観測終了後に常数の更新を行った.

これらの常数を用いて再計算した観測値が図4,図5で ある.図中の Old(青×印)は、校正前の結果で、New(赤丸 印)は、今回の BR#190 との相互比較観測から得た新しい 観測用常数により再計算した結果である.

常数校正後の O3全量および SO2全量には,大気路程 µ に依存した系統誤差はみられない.

表 2	$O_3 \cdot$	SO ₂ 吸収係数	とETC	値の変更前後の	値
-----	-------------	----------------------	------	---------	---

	変更前	変更後
O ₃ absn	0.3388	0.3377
SO ₂ absn	1.1405	1.1375
O ₃ ETC	1873	1848
SO ₂ ETC	821	763

5. 波長別紫外域日射照度の比較結果

5.1 観測方法および解析に用いたデータ

波長別紫外域日射照度(以下,「UV」という.)の相互 比較観測は,正確に30分毎に波長範囲290nm~363nmを 0.5nm ごとに片道走査する ua(定時刻広領域紫外線観測) コマンドを使用して,Final ozone days の6/25~6/27(JD176 ~JD178)に行われた.各測器や制御装置の内部時計も30 分ごとに時刻校正を行っている.

本稿では、相互比較観測を実施した3日の中で気象条件が良く、データの欠測が比較的少ない2日間(6/25(JD176),6/26(JD177))のデータを用いて、BR#190に対するBR#174の比(BR#174/BR#190)を以下4つの要素毎に比較した.

TUV ・・・・・ 波長 290.0~325.0nm の積算紫外線量 UVB ・・・・・ 波長 290.0~315.0nm の積算紫外線量 DUV ・・・・・ Damaging UV:有害紫外線量 CIE ・・・・・ Erythema UV:紅斑紫外線量

図 4 校正前後の O₃全量の比較(BR#174/BR#190) 上図:O₃全量散布図.

下図: Air mass 別の偏差(%).

5.2 外部標準ランプ点検による測器感度の確認

外部標準ランプ点検は,NIST ランプ検定による常数決 定以降の感度変化を把握・補正するための点検である. 本相互比較では従来型と,試験的に使用している新型の2 種類の外部標準ランプ点検装置を現地に持ち込み使用した.相互比較期間中,BR#174 では従来型装置による点検を6回,新型による点検を1回実施し,測器感度を常に 追跡した.このうち今回の相互比較観測では,従来型装置による結果を使用して観測値の補正を行った.

外部標準ランプ点検の実施日と各ランプにおける波長 毎の基準放射照度に対する点検時の放射照度比(以下,「波 長別測器感度比」という.)の平均値を表3に,その変化 を図6に示す.波長別測器感度比は,本相互比較前(5/22, JD142)につくばで実施したNIST ランプ検定時の外部標準 ランプ点検値(図中(A))を基準としている.

図 6 のとおり,相互比較期間(図中(B))において,測器 を設置した翌日は輸送前と比べ2%以上の感度上昇が見ら れたが,以降の点検ではほぼ輸送前の水準に戻っており, 特に UV の相互比較期間である期間後半では感度が安定 していた.また,帰国後のつくばにおいて実施した NIST ランプ検定および外部標準ランプ点検の結果から,良好 に測器感度が追跡されていることが確認された.

表3 外部標準ランプ点検結果 L80x はランプ番号.

DAY	L801	L802	L803	L804	L805	AVG	SITE
2010.05.22 (10142)	1.000	1.000	1.000	1.000	1.000	1.000	Tukuba
2015.05.22 (JD142)	1.000	1.000	1.000	1.000	1.000	(Base)	(in room)
2019.05.28 (JD148)	0.994	0.993	0.996	-	-	0.994	Tukuba
2019.06.18 (JD169)	1.022	1.019	1.019	1.026	1.018	1.021	Huelva
2019.06.21 (JD172)	1.000	0.997	0.999	-	-	0.999	Huelva
2019.06.23 (JD174)	0.991	0.987	0.986	-	-	0.988	Huelva
2019.06.24 (JD175)	0.994	0.994	0.995	-	-	0.994	Huelva
2019.06.26 (JD177)	0.990	0.990	0.987	-	-	0.989	Huelva
2019.06.27 (JD178)	0.990	0.988	0.988	-	-	0.989	Huelva
2019.07.19 (JD200)	0.984	0.986	0.983	-	-	0.984	Tukuba

5.3 比較結果

(1)4要素の積算値の比較結果

6/25(JD176)と 6/26(JD177)の 2 日間における BR#174 と BR#190 の TUV, UVB, DUV, CIE について, それぞれ日 積算値の比(BR#174/BR#190)(以下,「日積算比」という.) を比較した.図7はTUVの,図8はCIEの30分毎の値(日 変化)と日積算比を示す(UVBとDUVの図もほぼ同様であ るため省略).BR#174は6/25の07:30,08:00,08:30,6/26 の15:00,15:30,20:30が,BR#190は6/25の14:00,14:30,

15:00, 15:30 が欠測している. なお, BR#174 は外部標準 ランプ点検値による測器感度の補正を施したが, BR #190 は同点検を実施していないため補正していない.

図7,図8から,TUVとCIEともに日積算比は,2日間 ともほぼ一致し,朝夕の時間を除きおおよそ0.98~ 1.02(±2%以内)の差に収まっている.朝夕で差が大きくな っている要因は,両測器の入射角特性に違いがあること, UVが非常に少ない時間ではS/N比が小さくなることが考 えられる.また,朝の時間に日積算比が非常に大きくな っているが,これは屋上東側にあったアンテナ等の人工 物の影がBR#190にかかり,BR#190のみ値が非常に小さ くなったためと推測される.

日積算值 (BR#174 / BR#190)						
	TUV	UVB	DUV	CIE		
6/25 (JD176)	1.001	0.998	0.994	0.996		
6/26 (JD177)	1.004	1.003	1.000	1.002		
平均値	1.003	1.000	0.997	0.999		

30 分ごとの波長別紫外線時別比を示す(9 時~21 時).

4 要素の日積算比は表 4 のとおりであり, 平均値は, TUV:1.003, UVB:1.000, DUV:0.997, CIE:0.999と, 全要素で±1%以内で一致した.

(2) 波長別紫外域日射照度(UV)の比較結果

6/25(JD176)と 6/26(JD177)の BR#190 に対する BR#174 の UV の時間別の比(BR#174/BR#190)(以下,「波長別紫外 線時別比」という.)を図9に示す.約305nm 未満の UV が非常に弱い波長領域を除き,どの波長域でも概ね一致 した.ただし,330nm~340nm 付近は BR#190 に比べて BR#174 がやや大きく,350nm 以上の長波長域では逆に BR#174 が小さい傾向があり,波長領域によって比が異な る傾向がみられた.

6. ヨーロッパ地区基準器 (BR#185) との比較

世界基準器のオゾン観測用常数は、ハワイ島マウナロ ア観測所においてラングレー法により決定されている (Fioletov *et al.*: 2005). 一方、ヨーロッパ地区基準器のオ ゾン観測用常数についても、世界基準器の常数校正と同 様に高地(スペインのイザーニャ観測所)においてラング レー法により校正されている(Stachelin *et al.*: 2010). ここ では、本相互比較期間中にヨーロッパ地区基準器 (BR#185)と BR#174 の観測値を比較した結果について参 考として述べる.

(1) O3 全量および SO2 全量の比較結果

図 10 に BR#185 に対する BR#174 の O₃ 全量および SO₂ 全量の比較結果を示す. 図の Old は BR#190 による校正前 の観測値, New は校正後の BR#174 の観測値である. BR#174 の O₃ 全量は,校正前は BR#185 に比べ約 2.3%小 さい値であったが,校正後は BR#185 の値に近づいた. し かし,それでも BR#174 の方が約 0.9%小さい結果となっ た. BR#174 の SO₂ 全量は,校正前は BR#185 よりも 0.4 m atm-cm 小さいが,校正後はさらにその差が大きくなり, 1.8 m atm-cm 小さい結果となった.

(2) 波長別紫外域日射照度(UV)の比較結果

図 11 に UV の時間別の比の比較結果を示す. UV が少 ない 305nm より短波長側ではばらつきが大きくなってい るのは BR#190 との比較結果と同様であるが,波長別紫外 線時別比(BR#174/BR#185)については波長領域による大 きな変化は認められない. UV の大きさは, BR#185 に対 し BR#174 が小さく,表5に示す通り4 要素の2日間の平 均値は0.937~0.939 で, BR#185 に比べ約6%小さかった. なお, BR#185 も BR#190 と同様に,外部標準ランプ点検 による測器感度の補正は行っていない.

図 10 校正前後の O₃全量の比較(BR#174/BR#185) 上図:O₃全量散布図. 下図:SO₂全量散布図.

図 11 波長別紫外域日射の比較(BR#174/BR#185) (2019.6.25(JD176)).

30分ごとの波長別紫外線時別比を示す(9~21時).

表 5 TUV, UVB, DUV および CIE における日積算比 の平均値 (2019.6.25~2019.6.26)

日積算值 (BR#174 / BR#185)						
TUV UVB DUV CIE						
6/25 (JD176)	0.937	0.936	0.935	0.935		
6/26 (JD177)	0.941	0.940	0.939	0.939		
平均值	0.939	0.938	0.937	0.937		

7. QASUME との比較

6/25(JD176)~6/27(JD178)の UV 相互比較期間には, QASUME との同時相互比較観測も並行して行われた. QASUME は UV 観測において高い精度をもっており、ま た観測途中に1日1度のランプ校正を行い、その精度を 確認している.本相互比較終了後に PMOD より Calibration Certificate(校正証明書)を受け取った(Egli: 2019). QASUME を基準としたこの証明書によると、波長別紫外 線時別比(図 12 上図)から BR#174 の出力は, 波長依存性 はあまり顕著ではないが, 短波長に比べ長波長側では朝 晩に QASUME より小さくなる傾向が強く見られた.これ は入射角特性の影響が長波長側でより大きいことが原因 として推測される. UV の 6 波長の比(BR#174/QASUME) における日変化(図 12 下図)では, BR#174 の出力は全体で は QASUME よりも 5~15%小さく, 日変化がみられ, QASUME との差は日中の太陽高度の高い時間に小さく, 朝夕の太陽高度の低い時間には大きくなっている. さら に、太陽天頂角(Solar Zenith Angle: SZA)が 70° 付近で最 も差が大きく、また上述の通り太陽高度の低い時間では 長い波長ほど出力が小さくなる様子が確認できる.これ らの傾向は他のブリューワーでも見られ、ブリューワー の入射角特性(伊藤, 2002)が要因と考えられる. なお, QASUME もブリューワーと同様に太陽高度角が低くなる ほど出力が減少するため、入射角補正を行っている. ま た, QASUME は測器温度を一定(27±0.1℃)に保つことがで き,温度特性を補正する必要がないが,ブリューワーは 日射や外気温の影響を受け測器温度が変化し出力が変化 する. このことも QASUME との差に影響していると考え られる(Egli: 2019).

8. 考察

O3全量およびSO2全量の相互比較観測は,世界基準器と ヨーロッパ地区基準器で相互比較観測の結果に若干の違 いがあった.これは,世界基準器とヨーロッパ地区基準 器は,それぞれがラングレー法による常数校正を実施し ていることから,校正に伴う不確かさの範囲内で若干の 差が生じていると推測される.QASUMEとのUVの相互比 較観測ではBR#174はUVが5~15%程度過小に観測され, 太陽高度が低くなるにつれてその傾向が顕著になってい ることが示された.この傾向はブリューワーの世界基準 器にもみられ,ブリューワー同士の相互比較観測のみで はこのような影響を把握することは難しい.今回の QASUMEとの相互比較観測から,ブリューワーで観測す るUVには入射角依存性があり,そのために観測値が過少

図 12 BR#174 と QASUME の波長別紫外域日射照度(UV)の比較(Egli,2019 より転載) 上図:30 分ごとの波長別紫外線時別比(BR#174/QASUME).縦軸は波長別紫外線時別比,横軸は波長を示す. 凡例は無いが, グラフの下部の方が朝もしくは夕方の時刻,上部ほど太陽高度の高い正午に近い時刻の観測値である. 下図:UVの6波長の比(BR#174/QASUME)における日変化. 横軸は時刻(UTC)および太陽天頂角(カッコ内)を示す.

になっていることがほぼ明らかである. Egli (2019)では, ブリューワーに対しKaisa et al.(2018)の手法による入射角 補正を施すことで大幅に改善することが示されているが, これは晴天時に対してであり,雲が存在する場合におい ては扱いが難しくなる.現在JMAでは入射角補正を行っ ていないが,今後は雲がある場合を含めた観測値の補正 法の調査を行う必要がある.また,ブリューワーは外気 温や日射により測器内部温度が大きく変動するため,測 器温度と観測値の関係(温度依存性)についてもより把握 しておく必要がある.

9.まとめ

スペイン・ウエルバにおいて開催された WMO ヨーロ ッパ地区ブリューワー分光光度計相互比較に参加し,世 界基準器を保有する ECCC の移動基準器(BR#190)と JMA の国内基準器(BR#174)の相互比較観測を実施した.主な 結果は以下のとおりである.

(1) O3 および SO2 全量の相互比較観測結果

6/17~6/27 の 11 日間で行われた太陽直射光観測(DS 観 測)で, ECCC の BR#190 と BR#174 の観測時刻の差が 4 分 以内, μ が 1.3~5 の範囲のデータを使用し比較解析を行 った結果, 次のとおりとなった.

<O3全量比>

O₃_BR#174 / O₃_BR#190 = 0.985 (-1.47%) <SO₂ 全量差>

 $SO_2_BR#174 - SO_2_BR#190 = 1.3 \text{ m atm-cm}$

この結果および期間中に実施した分光常数点検の結果 より、O3全量および SO2全量の大気外常数(ETC 値)と吸 収係数を変更した.

なお、今回の相互比較観測で校正前の比較結果ではO3 全量に約-1.5%の差があることがわかったため、直近で常 数校正を実施した2018年3月のカナダのトロントにおけ る国際比較の校正結果を再検討する予定である.

(2) 波長別紫外域日射照度の比較観測結果

比較期間中において条件の良い 2 日間(6/25, 6/26)のデ ータを用い, BR#190 に対する BR#174 の比(BR#174/ BR#190)を 4 つの要素別(CIE, TUV, UVB, DUV)につい て, 波長別紫外域日射照度を比較した. その結果, 4 要素 の比ではいずれの要素においても 1%以内で一致すること が確認された. 波長別紫外域日射照度の比較では, 330nm ~340nm 付近は BR#190 に比べて BR#174 がやや大きく, 350nm以上の長波長域では逆に BR#174 が小さい傾向がみ られものの, その差は小さく, 紫外域日射照度の弱い約 305nm 以下を除き概ね一致する結果となった.

(3) ヨーロッパ地区基準器(BR#185)との比較

BR#190 による校正値を用いて再計算した BR#174 と, BR#185 の比較を行った. O3 全量では, BR#174 の値が約 0.9%小さく, SO2 全量は差が大きく BR#174 が 1.8 m atm-cm 小さかった. 波長別紫外域日射照度では, 波長毎 の比の変動はほとんど見られなかったが, 全体的に BR#174 が約 5%程度小さかった. また, 日平均の TUV, UVB, DUV, CIE では BR#174 が約 6%小さい結果となっ た.

(4) 紫外域スペクトルラジオメータ移動基準器(QASUME)との比較

QASUME との波長別紫外域日射照度の比較では,波長 依存性は大きくなかったものの BR#174 が 5~15%程度小 さい結果となった.この差は,日中の太陽高度の高い時 間に小さく,朝夕の太陽高度の低い時間には大きくなる 傾向がみられた.これらの要因としては,ブリューワー の入射角特性や測器温度特性によるものと推測される.

当庁では、これまで ECCC が維持するブリューワーの 世界基準器群と約4年毎に相互比較を実施してきた.今 後も長期的に高い観測精度を維持していくためには世界 準器群との比較観測を一貫して継続することが重要であ る.一方で、2018年よりブリューワーによるオゾン観測 を開始し、今後はGAWが推奨する2年毎の測器校正を実 施することとなった.今回はECCCも参加するとの情報 を得たためRBCC-Eの地区相互比較に初めて参加し、 QASUMEとの比較により入射角特性による紫外線観測値 への影響による補正の必要性があらためて浮き彫りとな る等、様々な収穫を得た.今後の2年毎の測器校正にお いても、測器特性の把握や世界の動向を知るうえで有意 義なRBCC-Eの地区比較への参加や、今後の測器校正で 検討している高地における絶対検定の実施について、世 界基準器群の動向を確認し、検討すべきである.

謝 辞

本相互比較観測への参加にあたり、スペイン気象局 (AEMET)の Alberto Redondas 氏や Dr. Jose Manuel Vilaplana 氏をはじめとするスタッフの方々には、本キャンペーン への参加を快諾して頂き、また荷物搬入や設置等、現地 での作業において大変ご協力を頂いた.また、本庁オゾ ン層情報センターの皆様、企画課国際室の皆様、当台の 國次台長をはじめとする関係官の皆様に大変お世話にな った.これらの方々に厚く御礼申し上げます.

引用文献

- Egli, L. (2019) : Protocol of the solar UV intercomparison at INTA, El Arenosillo, Spain from June 17 to June 27, 2019 with the travelling reference spectroradiometer QASUME from PMOD/WRC. *PMOD WRC.*, 29pp.
- Fioletov, V. E., J. B. Kerr, C. T. McElroy, D. I. Wardle, V. Savastiouk, and T. S. Grajnar (2005) : The Brewer reference triad. *Geophysical Research Letters*, VOL. 32.
- 伊藤真人・下道正則・能登美之(1998):カナダ大気環境長 (AES)における波長紫外域日射計の検定試験と測器相 互比較. 高層気象台彙報,58,1-10.
- 伊藤真人(2002):新型 NIST ランプ検定装置の開発と紫外 域日射観測装置(ブリューワー分光光度計)の高度角・方 位角特性. 高層気象台彙報, 62, 53 - 66.
- 伊藤真人・宮川幸治(2003):カナダ MSC における波長別 紫外域日射観測装置の国際測器相互比較 2002 年.高層 気象台彙報, 63, 1 - 12.
- 伊藤真人, T. Grajnar, M. Brohart, V. Savastiouk, and K. Lamb (2007): カナダ MSC におけるブリューワー分光光度計 の国際測器相互比較 2006 年と新型検定装置の制度. 高 層気象台彙報, 67, 39 - 52.
- Ito, M, T. Grajnar, and M. Brohart (2010) : Intercomparison of Brewer Spectrophotometers between MSC and JMA at Toronto, Canada in 2006, and Accuracy of MSC, IOS and JMA Systems of NIST Lamp Calibration. *Jour. of Aerological Observatory*, 69, 33 - 40.
- Kipp & Zonen (1996): Brewer MKIII Spectrophotometer Final Test Record, BR#174. Kipp & Zonen Inc., 75pp.
- Kipp & Zonen (2008a) : Brewer MKIII Spectrophotometer Operators Manual. *Kipp & Zonen Inc.*, 132pp.
- Kipp & Zonen (2008b) : Brewer MKIII Spectrophotometer Service Manual. *Kipp & Zonen Inc.*, 125pp.
- Kaisa, L., A. Arola, J. Grobner, S. F. L. Luis, A. Redondas, S.Kazadzis, T. Karppinen, J. M. Karhu, L. Egli, A. Heikkila, T.Koskela, A. Serrano and J. M. Vilaplana,(2018) :

Performance of the FMI cosine error correction method for the Brewer spectral UV measurements, *Atmos.Meas.Tech.*, **11**, 5167-5180.

- McElroy, C.T., V. Savastiouk and T. Grajnar (2008) : Standard operating procedures manual for the Brewer Spectrophotometer, Ver. D.01. *Environment Canada*, 138p.
- Redondas, A., S. Nevas, A. Berjon, M. M. Sildoja, S. F. L. Luis, V. Carreno, and D. S. Diaz (2018) : Wavelength calibration of Brewer spectrophotometer using a tunable pulsed laser and implications to the Brewer ozone retrieval, *Atmos. Meas. Tech.*, **11**, 3759 - 3768.
- 下道正則・伊藤真人(1995):波長別紫外域日射計のボール ダー国際相互比較.高層気象台彙報,55,11-18.
- Staehelin, J., R.Stubi, U.Kohler, A Redondas (2010) : Total ozone monitoring by groundbased instruments as part of GAW, TECO-2010, Session1-3.
- 上里至・清水悟・居島修・伊藤真人(2015):カナダ国トロ ントにおけるブリューワー分光光度計の国際相互比較 2014. 高層気象台彙報, 73, 55 - 61.
- WMO (2001) : Global atmosphere watch measurements guide No.143. WMO TD No.1073., 17pp.