授業用プレゼン用スライド雛形

津波避難ワークショップ授業

津波の性質を理解し 的確な避難行動をとろう

〇〇高校 〇年生 **科

本時の流れ

- ① 津波避難シミュレーションの説明(7分)
- ② 津波避難シミュレーション(14分)
- ③ 避難行動グループ発表の準備(5分)
- ④ 発表・意見交換(12分)
- ⑤ 津波の性質についての解説とまとめ(7分)
- ⑥ アンケート(3分)

現在あなた達がいる場所

東村有銘

沖縄市泡瀬

スタート地点に駒を置いて下さい

●赤い丸印がスタート地点です

現在地周辺の風景

東村有銘

沖縄市泡瀬

各グループの構成と歩行速度

高校生2 幼児1 高齢者1

東日本大震災で子供や高齢者と歩いて避難した人の平均速度

1.66km/時※ ⇒約2km/時とする

※国土交通省都市局「津波避難を想定した避難路、避難施設の配置及び避難誘導について」(平成25年4月発表)

道路は3分で100m以内

ひもの目盛が100mです

道のない山を登る場合は

これからの流れ

①スクリーンに気象台からの情報を次々と表示

情報名

〇〇情報 • • •

• • • • • •

(携帯・スマホの画面)

- ②情報を見て考え、判断し、行動する!
- ③判断の過程はワークシートにメモする

情報から何を判断し、どう行動したか 該当項目にO、話し合いの発言をメモ

これからの流れ

④「移動する判断」(「移動」に〇)をしていたときは、次の「3分経過の合図」時に、 ひもの目盛を使って駒を移動させる。

「移動する判断」をしていなかったときは 駒は動かせません

シミュレーションを開始します時刻は、もう少しで15時になるところ

穏やかなある日 皆さんは海の近くで のんびり休日を楽しんでいます

雑談をして過ごしてください

15時直前

おや?突然、携帯・スマホから聞きなれない音が・・

ルルギュイン、ギュイン、ギュイン・・・

情報名 15/07/22 14:59:50

緊急地震速報

沖縄県で強い地震発生 強い揺れに備えてください。 (気象庁)

どうしますか?行動をメモしてください

00:00 (00分00秒) ちょうど15時

揺れています 立っていられないくらい 大きく揺れています!

どうしますか?行動をメモしてください

地震による揺れが発生してから30秒後

地震の揺れが収まってきました

行動をメモしてください

情報名

01:30

時刻

震度速報

平成28年〇月〇日 15時01分 気象庁発表

15時00分頃強い揺れを感じました。 震度3以上が観測されている地域は次 のとおりです。

震度6強 沖縄県本島北部、沖縄県本島中南部、沖縄県久米島

震度5強 鹿児島県奄美南部

情報名

03:00

時刻

大津波警報

平成27年7月14日 15時O3分

気象庁発表

大津波警報が発表されました。

沖縄本島地方 大津波警報

大東島地方 津波警報

宮古島・八重山地方 津波警報

東日本大震災クラスの津波が来襲します。

ただちに避難してください。

地震の揺れがおさまって すぐに移動判断 → 100m以内移動 移動判断をしなかった→ **駒は動かさない**

情報名

04:30

津波情報(津波到達予想時刻・予想される津波の高さに関する情報) 時刻

平成27年7月14日 15時04分 津波到達予想時刻および予想される津波の高さ は次のとおりです。

<大津波警報>

沖縄本島地方 14日15時20分 巨大 大東島地方 津波到達中と推測 巨大 宮古島・八重山地方 14日15時30分 高い

震源地は、沖縄本島近海(北緯26.5度、東経128.5度)で、 震源の深さは約20km、地震の規模(マグニチュード)は 8を超える巨大地震と推定されます。

(地震発生から6分経過)

大津波警報(03:00)で移動判断

→ 駒を100m移動

津波情報(04:30)を聞いてから移動判断

→ 駒を50m移動

移動判断をしなかった → 駒は動かさない

(地震発生から9分経過)

06:00のときに

移動判断をしていた → 駒を100m移動

ここからは、3分を1分に短縮します。

(地震発生から12分経過)

(地震発生から15分経過)

(地震発生から18分経過)

(地震発生から21分経過)

津波の第1波が到達しました

シミュレーション終了

(地震発生から約21分経過)

(例)

- ①沖縄市県総~津波の高さ6m、<u>遡上高8m</u>
- ②東村有銘~津波の高さ23m、<u>遡上高</u>31m

〇 各グループの到達地点に 沖縄県の浸水想定図を重ねます。

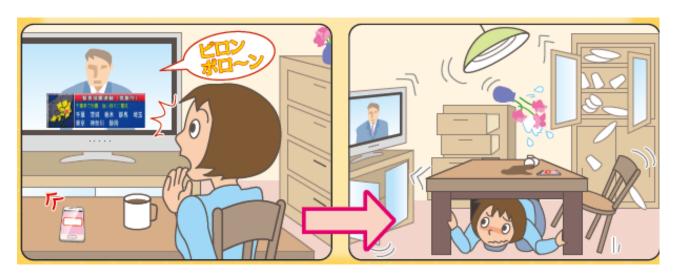
※あくまでも想定です。 実際の巨大津波では異なる状況も考えられます。

発表

- ◎ 最終到達地点とルート どうしてそのルートを選んだか
- •どんな意見が出たか
- どの時点で避難を開始したか
- ・緊急地震速報でどのように行動?

解說

1 地震から身を守る


2 津波の性質を理解し、 的確な避難行動をとろう

地震から身をまちる

緊急地震速報

地震による強い揺れを事前に知らせる

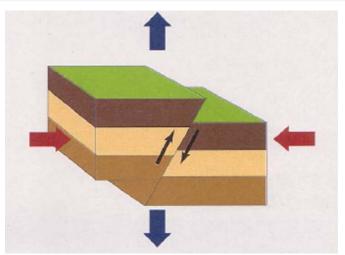
テレビ・ラジオ

携帯電話

あわてず、まず身の安全を確保する

突然大きく揺れた場合の行動も同じです

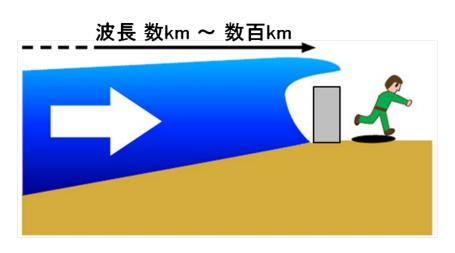
とつさの場合に対応できるように、普段から訓練しておこう



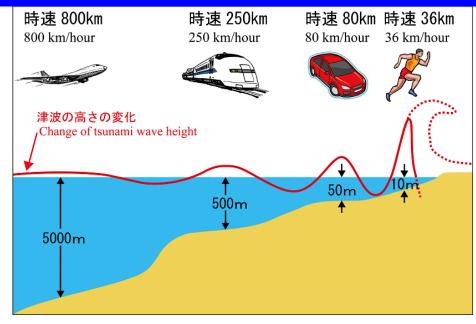
津波から身をまちる

「津波を正しく知る」 ⇒「避難のしかたを知る」

津波発生のしくみ



断層の一例: 縦ずれ断層型



津波の性質を知ろう

・巨大な洪水のように長時間流れ込む・第一波が押し波の場合もある

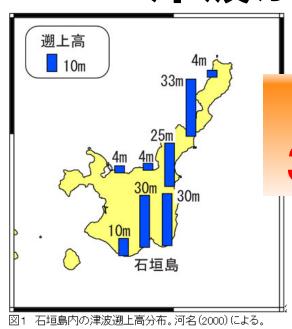
・人が逃げ切れない速さ

"普通の波"と 津波の ちがいを見てみよう

動画

津波から身をまもる

基本中の基本

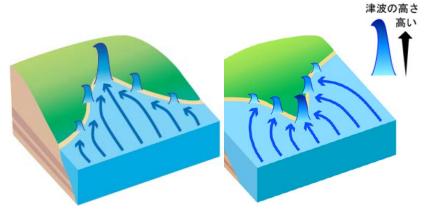

すぐ遅難!

より高いところへ!

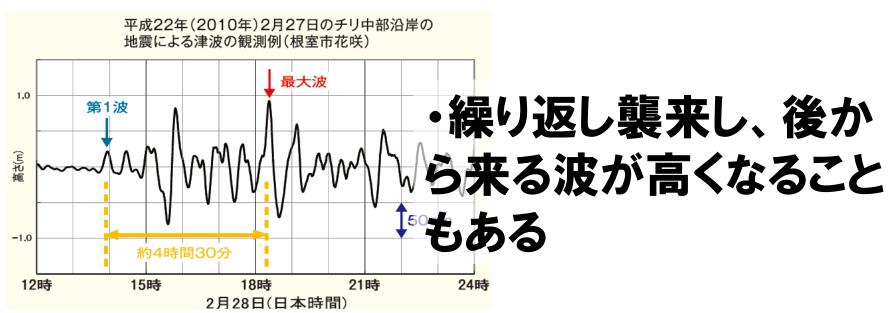
揺れがおさまってから冷静に

揺れが大きくなくても 津波が押し寄せることがある

明和の大津波(1771年) 30m超 死者1万人以上


揺れはそれほど大きくなかった

地球の反対側から約24時間かけて


チリ地震による津波(1960年) 沖縄でも4m 死者3名

・海岸に近づくと急 に高くなる

東日本大震災岩手県釜石市の教訓

〇中学生「津波がくるぞ、にげろ!」 率先避難

隣の小学校の児童を含め避難した全員が助かった

正しい知識, 的確な行動

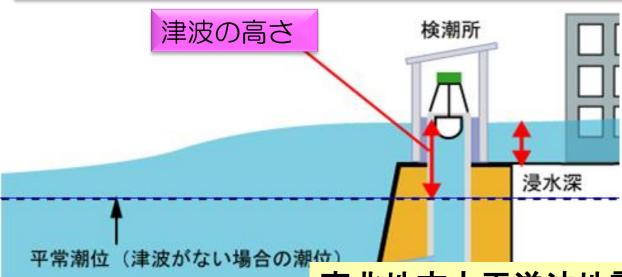
- Oすぐ 逃げる
- Oまわりにも声をかける
 - ●津波は来ない、との自己判断は危険


学んだことが、命を守った

END

以下は補足的な説明です。参考にしてください。

緊急地震速報とは


津波に関する警報・注意報等

分類	高さの区分	予想される津波の高さ	
		数値表現 (5段階)	定性表現(※)
大津波警報	10m~ 5m~10m (3m~5m	10m超 10m 5 m	巨大
津波警報	(1 <u>m</u> ~3 m	3 m	高い
津波注意報	0. 2m~ 1 m	1 m	(表記しない)
津波予報 (若干の海面変動)	(∼0. 2m)		

津波の高さと遡上高

津波の高さとは、平常潮位からの高さ

遡上高とは、津波が陸地に押し寄せて 最も高くなった所 (津波の高さの2~4倍になることがある)

東北地方太平洋沖地震では 岩手県大船渡市綾里湾で<mark>最大遡上高40.1</mark>m

1998年5月4日 石垣島南方沖 M7.7

津波警報発表

八重山毎日新聞(1998年5月7日)

1771年4月24日「明和の大津波」

地震の揺れは小さく、石垣島で震度4程度と推定されている。この地震では、高さ最大 30m弱と推定される大きな津波が宮古島・八重山地方を襲い、その被害は溺死者約 12,000人、家屋流失2,000棟余りに上った。地震調査研究推進本部「日本の地震活動(第2版)」