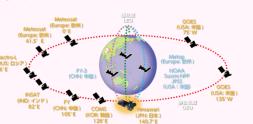
安全・安心な国民生活・社会経済活動に不可欠な社会インフラ

災 防

- ・台風の監視(特に洋上は唯一の手段)
- 観測データはスーパーコンピュータによる 数値予報で処理され、 予報・警報の基盤と なっている。


国民生活

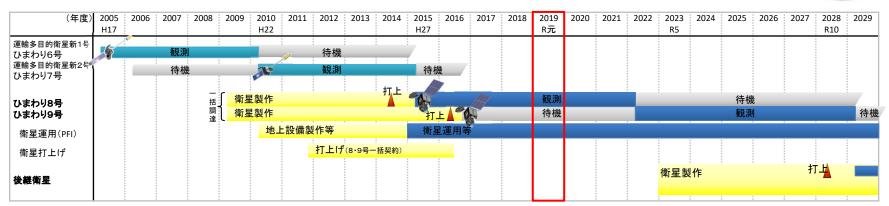
- ・日々の天気予報に不可欠
- ・お茶の間に根強く浸透

国際貢献

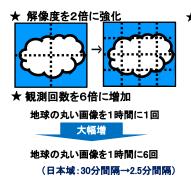
- ・世界気象機関(WMO)における 世界的な観測網の一翼を担う
- ・地球環境の監視 (地球温暖化、黄砂)

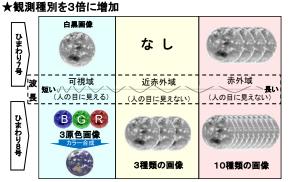
産業・交通安全

- ・農業、観光等の各種産業に おける基盤情報として利用
- ・航空機、船舶等の安全で経 済的な航行に寄与



現行衛星(ひまわり8号・9号)の計画


▶静止気象衛星 ひまわり8号・9号


- ✓ ひまわり8号を2014年10月7日に打ち上げ、2015年7月7日から観測運用。2022年から待機予定。
- ✓ ひまわり9号を2016年11月2日に打ち上げ、2017年3月10日から待機運用。2022年から観測運用予定。
- ✓ ひまわり9号は2029年に設計上の寿命を迎える。
- ✓ 今後とも、宇宙基本計画に基づき後継機を切れ目なく整備し、将来にわたり万全な観測体制を構築。

※2019年度、後継機に向けた技術動向調査に着手

【ひまわり8号・9号の観測センサ(測器)の機能】

効果

【防災のための監視機能】

台風や集中豪雨等の観測情報をより精密により早く提供

【地球環境の監視機能】

海面の温度、海氷の分布、大気中の微粒子等を対象とした観測をより高精度に実施

ひまわり8号・9号の性能向上

初号機 2号 3号 4号

5号

6号


7号

8号•9号

分解能(解像度)

可視

1.25km 5km 1.25km 5km

1km 4km 1km 4km

0.5km 2km

観測頻度

白黒

3時間ごと

白黒

1時間ごと

白黒(フルディスクと

ハーフディスク)

全球 1時間ごと 半球 30分ごと

カラー

10分ごと+領域観測

解像度の向上

より小さな気象現象を捉えることが可能に!

観測回数の増加

より詳細に天気の変化を捉えることが可能に!

観測画像の種類の増加

これまで見えなかった対象が見えるように!

ひまわり 8号・9号

可視 0.5km、1km 赤外 2km 1時間に6回

領域観測: 日本付近及び 台風は2.5分毎 **青緑赤**3種類になり
カラー画像の
作成が可能に!

新たに近赤外線も含めて 13種類に

判別が難しかった現象の 観測が可能に!

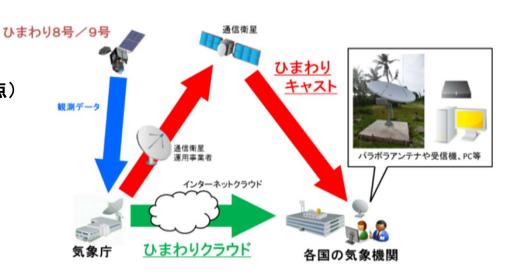
海外気象機関向けのひまわりデータの提供

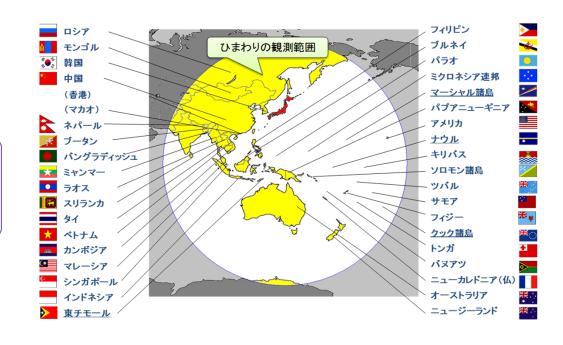
【観測データの提供】(令和元年7月時点)

●ひまわりクラウド

インターネットによるデータ提供

ひまわりクラウド(地上回線) 24 ユーザー

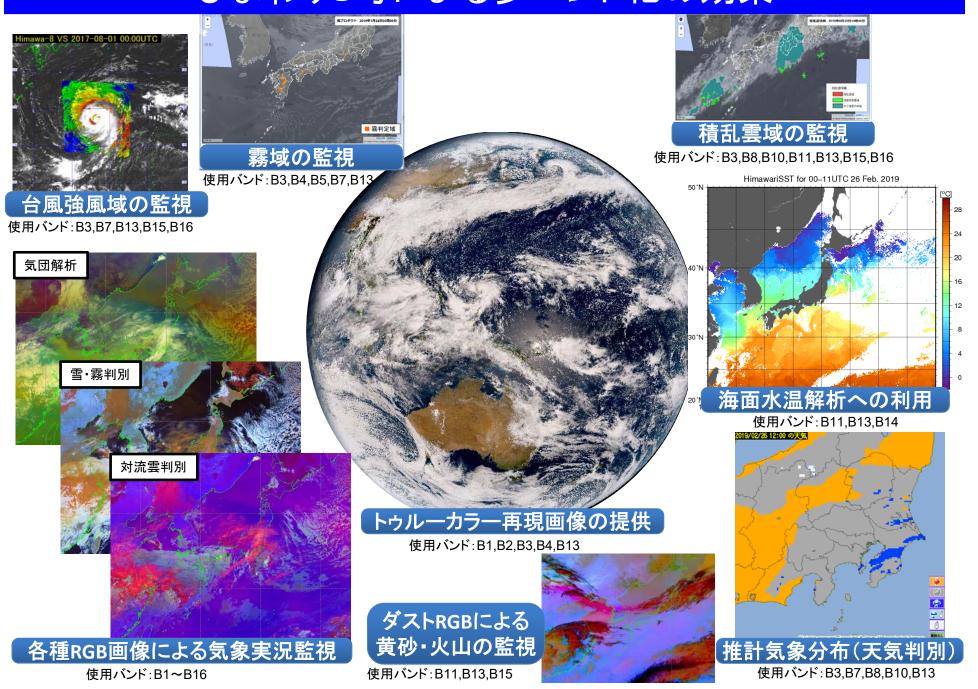

(欧州気象衛星研究開発機構を含む)


●ひまわりキャスト

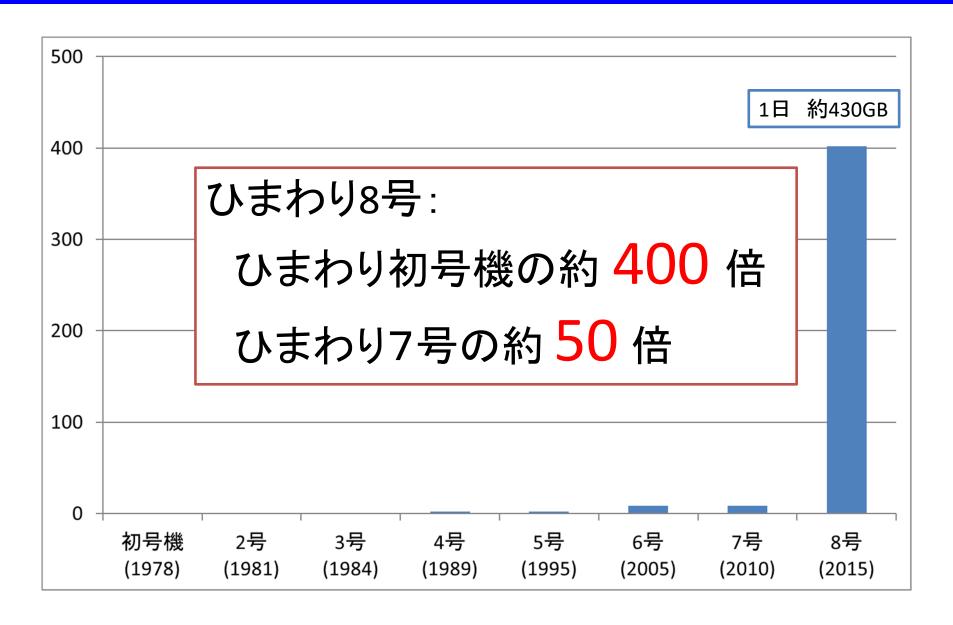
衛星通信を利用してデータ配信 比較的安価な受信システム

●東アジア・西太平洋地域の 防災対応に大きく貢献

ひまわりの利用、海外展開・支援


海外支援

ハードだけでなく、ソフト(研修)を含めたパッケージによる支援


- ●世界気象機関(WMO)や国際協力機構(JICA)との協力支援により、 開発途上国や島嶼国(計20か国)の気象機関が「ひまわりキャスト」の 受信システムを導入。
- ●各国への気象庁専門家派遣による研修 様々な種類の画像の特徴と利用方法、実例を用いた衛星画像解析 などのセミナー、講義及び実習を実施。

ひまわり8号による多バンド化の効果

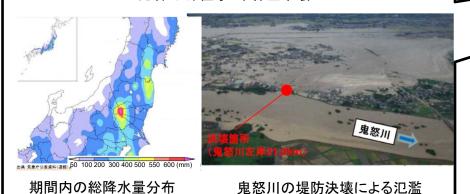
気象衛星「ひまわり」のデータ量(概算)

静止気象衛星「ひまわり」と主な災害

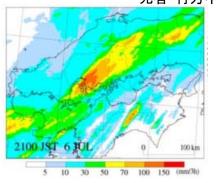
伊勢湾台風(昭和34年) 死者·行方不明者数5098人

沖永良部台風 台風による陸上最低気圧を記録

ひまわりによる初の台風観測画像

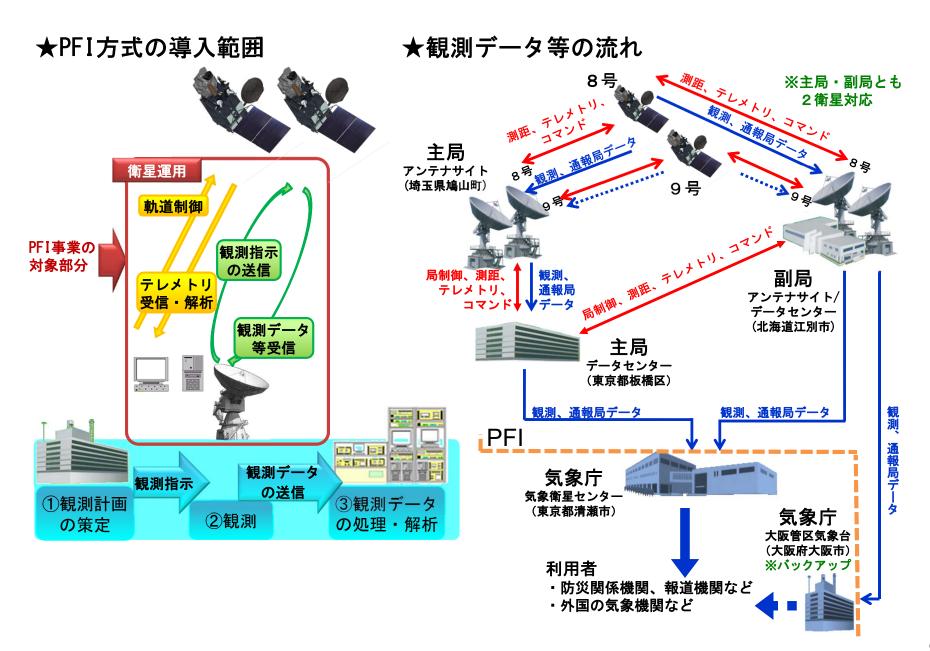


報道発表(平成28年6月15日)より 台風進路予報における予報円の改善

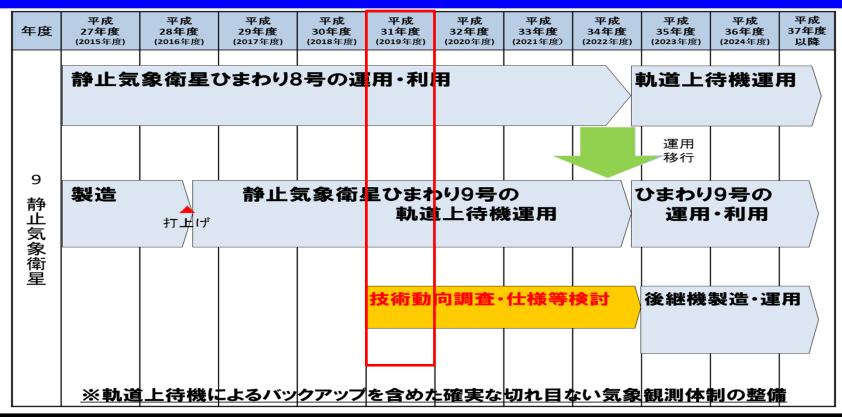

ひまわりによる観測で 台風の監視はできてい るが、近年災害が多発 する線状降水帯の予測 には下層の水蒸気観測 が不可欠

平成27年9月関東·東北豪雨 死者8人、住家7千棟全半壊

平成30年7月豪雨 死者·行方不明者数232人



広島県でみられた線状降水帯の例



広島県広島市安芸区榎ノ山川 における土砂の流入

ひまわり8号・9号の運用体制 ~PFI方式の導入~

宇宙基本計画における工程表

平成31年度(2019年度)以降の取組(赤字部分)

- ひまわり8号・9号の2機体制によって、静止気象衛星による観測を継続して実施するとともに、台風・集中豪雨等の監視など、国民の安全・安心に欠かせない衛星データの利活用を引き続き行う。
- ひまわり8号・9号の後継の静止気象衛星は、遅くとも2023年度までに製造に着手し、 2029年度頃に運用を開始することを目指す。
- 2019年度より、静止気象衛星の後継機の性能・仕様等の多様な事項の検討の基礎と するため、国内外の技術動向の調査を進める。